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An accurate normalization prescription is derived and tested for approximate 
bound vibrational wavefunctions due to W. H. Miller [1]. These bound state- 
and single turning point uniform Langer transformed continuum functions 
then are used to approach all types of Franck-Condon transition elements via 
partially uniform mapping techniques in a three dimensional space of integra- 
tion variables. The classical Franck-Condon principle, Mulliken's difference 
potential, various reflection approximations and many other of the more 
recent approaches are shown to be naturally included in our method. The 
excellent accuracy of the final results is demonstrated by comparing with exact 
Franck-Condon matrix elements of Stiickelberg's bound-cont inuum model. 

Key words: Continuum-continuum, bound-cont inuum and bound-bound 
Franck-Condon factors - Semiclassical matrix elements - Excimer lasers. 

1. Introduction 

Approximate vibrational wave functions to a two-turning point anharmonic well 
have been obtained by W. H. Miller [1] by matching two Airy-uniform wave 
function pieces [2] at some convenient midphase point. Miller aimed at deriving 
some improved quantum condition, which especially for lowlying vibrational 
states should be of better accuracy as the conventional WKB condition. In Ref. [1] 
however, Miller did not derive the normalization factors to his wave functions, 
even though he implicitly made use of them when calculating Franck-Condon 
factors in Sect. III of his paper. 
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Since we are concerned here with (partially) uniform evaluations of Franck-  
Condon (FC) factors, we need those normalization constants, or, at least some 
very accurate approximations to them. This fixes the plan of this paper: 

In Sect. 2 we derive an accurate expression for the normalization constant of 
Miller's wavefunction by exploiting a Wronski determinantal relationship. This 
and a simplified version of this expression then is used to present an accuracy test 
of Miller's functions in case of the harmonic oscillator. 

In Sect. 3, various FC integrals (bound-continuum, bound-bound,  etc.) are 
evaluated in some semiclassical approximation by making use of stationary phase 
mapping techniques in a three dimensional space of integration variables. In the 
sense of stationary phase integration, the main contributions to the FC integrals 
are seen to come from small regions (points) which satisfy in some subspace the FC 
principle or the difference potential concept introduced by Mulliken [3]. 

In Sect. 4 several reflection approximations and other limiting forms are derived 
from the general t reatment in Sect. 3. 

Finally, in Sect. 5, the accuracy of our semiclassical approximation is checked by a 
numerical comparison with the exact FC integrals of Stfickelberg's bound-  
continuum model [4]. 

2. Normalization of Piecewise Airy-Uniform Bound State Functions 

As mentioned above, W. H. Miller [1] has composed approximate vibrational 
wave functions for an anharmonic potential V ( x )  from two pieces, each of which is 
an Airy-uniform Langer function at either turning point xb  x2, x~ < xz. See Fig. 1 
for a schematic description of the continuous derivative matching of the two wave 
function pieces at the midphase point x0. Miller's results can briefly be sum- 
marized as follows. The wave function of a bound state with the nodenumber  n 
can be written in the form 

~o,(x) = a ( x ) sg i ( z ( x ) ) ,  (1) 

v (x) -~ 

Fig. 1. Matching of the two Airy- 
uniform Langer functions 
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a(x) = Co(x)lz'(x)[ - m  

C . ( x ) = D . { ( - 1 ) " ,  for - cc<_X-Xo 

1, for Xo<-X <_ +oo, 

where z (x) is the continuous union of solutions of 

2m 
z'2z =-uE V(x)- jz . ]= u(x), 

(2) 

(3) 

(4) 

which for x <-x0 vanishes at the inner turning point Xl 

z(xl) = 0, for x-<xo 

and for Xo <- x vanishes at the outer turning point x2 

z(x2) = 0, for Xo-X. 

The midphase point Xo is determined by 

I? (o dx k(x)  = dx k(x)  = d~/2 
o 1 

(5) 

(6) 

(7) 

i 
x 

= dx k(x)  =- ~ (E , ) ,  hk(x)  = ~/2rn[E, - V(x)], (8) 
1 

which depends on the binding energies E, .  The values E ,  are fixed by the modified 
WKB condition 

~(E~) = 7r(Nn + 1/2), (9) 

where the noninteger numbers Nn are given by 

I 4 3/2 1 
N~ = , t  ~ [A(n+l)/2] -~, for n = 1, 3, 5 . . . .  (odd) (10) 

[~[B(n+2) /2]  3/2-1 , for n =0 ,  2 ,4  . . . .  (even). 

The real, positive number As is the sth zero of 

n + l  
~ i  ( -As)  = 0, s = 2 (11) 

and Bt is the tth real, positive zero of 

n + 2  
~li ( - B , ) - 4 B ,  s4 i ' ( -B , )=O,  t =  2 (12) 

As seen by inspection of Table 1 in [1], the numbers Nn deviate from the 
corresponding integers in the WKB condition less than 6%. Clearly, this means 
that e.g. for the harmonic oscillator, Miller's modified quantum condition (9) is 
less accurate than the WKB condition, which in this case is exact. For the quartic 
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oscillator however, condition (9) gives better energy values than the usual WKB 
condition. 

If one wishes to use the bound state functions (1) for calculating FC integrals, it is 
necessary to determine the still unknown normalization constants D ,  in Eq. (3). 
The evaluation of the normalization integral 

4-r I.=f_ dx 2 ~o,(x) (13) 

can be performed with the help of the Wronski relation applied in [5]. Neglecting, 
as in [5], Schwarzian derivative corrections, we note from Eqs. (1)-(4) that 
~0(x) ~ ~(E, x) for E # E ,  satisfies the differential equation 

d 2m V(x)]}q~(E,x)=O,  (14) 

which as in [5] leads to 

2mr  ~ I-0~o a~ 02o ]x=t~ ix=~ 
h 2 L dx  2(E' x)= L- jx= = wx( E, 0,)1 (15) 

valid for any finite integration interval (a,/3) not containing the midphase pointxo. 
Since because of E # E.,  the first derivative of ~o(E, x) with respect to x, Or is 
discontinuous, but ~o(E, x) still vanishes at the boundaries x = +oo, we find, upon 
applying (15) separately to the left and to the right of the midphase point xo, 

2m I_ ~ h2. d x r  = lim 
O0 ~"-~0+ 

2m 
= h~ I (E) .  (16) 

After having evaluated this limit, I ( E )  then finally yields the desired integral (13) 
for E = E,,  

In = I (E . ) .  (17) 

We do not intend to present the details of this straightforward but quite tedious 
calculation. We rather give the result 

h 2 d ~ ( E . )  (18) 
I .  = D ~  - -  - - / ~ . ,  

2 rn .tr dE.  

where 

I [ J i '  2 -~/2 (-A(n+l)/2)] (A(.+1)/2) , for n = 1, 3, 5 . . . .  
+ 5WB wx/z (19) tz. = ~r[s4i, (_B(.+z)/2)]2(16B(.+2)/2 )~ (~+2)/2/ , for n = 0, 2, 4, 

Hence, if the q~.(x) in (1) shall be normalized according to 
-/-oO 

dx q~,(x) = 1, (20) 
~XD 
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Table 1. Quantum constants N,, Eq. (10) and 
the coefficients /s Eq. (21) for various 
nodenumbers n 

n N.  u ;  ~/2 

0 0 .060331748 0.94334586 
1 1 . 0 1 7 3 4 9 2  0.99493009 
2 2 . 0 1 1 5 0 4 8  0.99761516 
3 3 . 0 0 7 8 9 9 5  0.99890841 
4 4 . 0 0 6 3 0 3 0  0.99928937 
5 5 . 0 0 5 0 7 8 9  0.99954491 

10 1 0 . 0 0 2 6 8 5  0.99987177 
15 1 5 . 0 0 1 8 1 4  0.99994160 
20 2 0 . 0 0 1 3 7 3  0.99996644 
30 3 0 . 0 0 0 9 2 3  0.99998482 
40 4 0 . 0 0 0 6 9 5  0.99998466 
50 5 0 . 0 0 0 5 5 7  0.99998878 
70 7 0 . 0 0 0 3 9 9  0.99999548 

100 1 0 0 . 0 0 0 2 8  0.99999857 

the constants Dn in Eq. (3) are to be fixed according to 

_ [  2mrr ]1/2 
D n -  [h~qb,(E,)j /z~ 1/~. (21) 

In Table 1 the quantum constants AT, (Eqs. (9), (10)) and the values/x21/2 needed 
in (21) are listed for several nodenumbers  n. We note, that for nodenumbers  n >~ 1 
one may safely replace Eq. (21) by the simpler expression 

I- 2mTr -]1/2 
= Lh% - o)j , (22)  

the accuracy of which reflects the fact that state densities and hence the normal-  
ization constants of bound state functions are adiabatic invariants. This suggests a 
more  convenient  version for calculating the normalized bound state functions (1). 
Replace Eq. (10) just by 

N ,  = n (23) 

and replace Eq. (21) by Eq. (22). The search of the midphase value Xo in general 
however has to be done numerically, if it is not anyway fixed by the symmetry of 
the potential  well. Let  us distinguish such a bound state function obtained via this 
simplified procedure f rom an accurate one, ~0, (x), by attaching a subscript " s " .  In 
Table 2, several values of q~, (x) and ~ ,  (x) are compared with the corresponding 
exact eigen functions 

g, ,(x  ) = H , ( x  ) e-~2/22-n/2(n !)-1/2qT-1/4 (24) 

of a harmonic oscillator with the potential  ( 2 m / h  2) V ( x )  = x 2. We note that q~ and 
q~, are of roughly the same accuracy. In spite of the simpler numerical procedure ~os 
should be used preferentially. We also note that close to a zero of the exact wave 
function tO, the relative errors of ~0 and q~s clearly may increase (as seen e.g. for 
n = 6 0 ,  x = 0.7 or 5.2). But this would not affect the accuracy of integrals 
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Table 2. Comparison of Miller's bound state functions Cn(x), r with the exact eigen functions 
0n (x) of a harmonic oscillator, Eq, (24). The numbers in parentheses denote the power of 10 by which 
the value in front must be multiplied 

n x ~O,(x) ~o,n(x) 1 -  -10 z r 1 - 7  " 102 

0.1 0.7474 0.7630 2.08 0.7109 4.87 
0.4 0.6934 0.6936 0.03 0.6634 4.32 

0 1.6 0.2088 0.2035 2.6 0.2065 1.14 
2.8 1.49(-2) 1.44(-2) 3.1 1.51(-2) 1.39 
5.0 2.7992(-6) 2.7043(-6) 3.4 2.9276(-6) 4.59 

0.0 -0.5311 -0.5324 0.24 -0.5306 0.10 
0.2 -0.4790 -0.4764 0.53 -0.4788 4.(-2) 
0.4 -0.3334 -0.3284 1.49 -0.3340 0.19 

2 0.8 0.1080 0.1137 5.29 0.1058 2.05 
1.6 0.6084 0.6086 5.(-2) 0.6071 0.21 
3.2 6.18(-2) 6.15(-2) 0.53 6.21(-2) 0.35 

0.0 0.315291 0.315303 3.8(-3) 0.315288 9.(-4) 
0.5 -0.315257 -0.315233 7.6(-3) -0.315254 7.(-4) 

20 2.0 0.323322 0.323317 1.6(-3) 0.323317 1.6(-3) 
5.0 -0.395581 -0.395567 3.4(-3) -0.395579 5.(-4) 
6.0 0.496804 0.496795 1.9(-3) 0.496797 1.4(-3) 
8.0 1.2241(-3) 1.2235(-3) 5.1(-2) 1.2247(-3) 4.5(-2) 

0.0 0.2405692 0.2405703 4.(-4) 0.2405680 5.(-4) 
0.7 3.81400(-2) 3.79825(-2) 0.4 3.81489(-2) 2.3(-2) 
2.6 -0.2436397 -0.2436462 2.7(-3) -0.2436460 1.(-4) 

60 5.2 3.9088(-3) 4.001(-3) 2.36 3.8725(-3) 0.93 
8.3 0.2969036 0.2969042 2.(-4) 0.2969012 8.(-4) 

11.5 6.83364(-2) 6.83304(-2) 9.(-3) 6.83405(-2) 6.1(-3) 
14.0 6.195(-8) 6.194(-8) 1.5(-2) 6.196(-8) 1.5(-2) 

p e r f o r m e d  with  the  func t ions  ~,  o r  ~. Thus,  the  s impl i f ied  vers ion  ~s of Mi l l e r ' s  
b o u n d  s ta te  funct ions  is idea l ly  su i ted  for  a p p r o a c h i n g  F C  integrals .  

3. Approximation Calculation of FC Integrals 

Reca l l i ng  Eq.  (23) of  Ref .  [5] and  Eq.  (1), we no te  tha t  all t ypes  of  F C  in tegra ls  
( c o n t i n u u m - c o n t i n u u m ,  b o u n d - c o n t i n u u m  and  b o u n d - b o u n d )  can be  app rox i -  
m a t e d  wi thin  p e r c e n t  accuracy  by  

I *  

= [ dxo(x) ~ i  (z~(x)) sei (z2(x)). (25) I 
of)  

In  Eq.  (25) the  func t ion  p(x )  m a y  con ta in  a d imens ion le s s  t rans i t ion  m o m e n t  (e.g. 
an e l ec t ron ic  t rans i t ion  m o m e n t )  and  o t h e r  p r e f ac to r s  which occur  in Eqs.  (1), (2), 
(3) o r  in Eq.  (23) of [5]. I m p o r t a n t  for  the  fo l lowing s teps  is on ly  one  p r o p e r t y  of  
p(x )  which we t ake  for  g ran ted ,  namely ,  tha t  p is s lowly vary ing  c o m p a r e d  to 
d l  (z~) or  ~41 (22). Tha t  this  a s sumpt ion  is ve ry  well  sat isf ied for  m o l e c u l a r  b o u n d -  
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or continuum functions is obvious, because in that case the typical variation range 
of J i  (z0 or Mi (z2) is the de Broglie wavelength of the molecular relative 
motion. 

With the integral representation for the Airy function [6] 

ll)  t)j M/(z)=~--~ d texp  i ~-+z (26) 
co 

we can write (25) in the form 

1 f+oo f+oo [§ 
dxa looa- dx2 j_o~ dx3p(x3)exp[ i~(x l ,  xz, x3)], (27) 

where the phase function �9 is given by 
3 3 

Xl  X2 
~3 = ~-'J~-~-nt- X IZI(X3) q- X2Z2(X3). (28 )  

Our aim now is, to relate the integral (27) to a simpler one which can be solved in 
closed form but has the same stationary point structure as (27). In this way [7-8] 
one obtains a uniform asymptotic approximation to (27) and hence to all types of 
FC factors. In order to do so, we first look for the stationary points of ~.  These are 
given by the (three) equations 

grad ~ = 0, (29) 

which lead to the system 

x~ + zl(x3) = 0, x~ + z2(x3) = 0, xlz'l (x3)+x2z'e(x3) = 0. (30) 

Defining 

u~(x) = zi(x)[zl (x)] 2, i = 1, 2, (31) 

(30) can be decoupled to yield 

Ul(X3) = U2(X3) (32) 

for the x3 = x co-ordinate (the integration variable in Eq. (25)) of the stationary 
points. In the sense of the stationary phase method Eq. (32) means, that the main 
contributions to the integral (25) come from those points which on the x-axis 
satisfy (32). If we recall Eq. (4) and Eq. (24) in [5], we note that in case of a 
transition from a potential (curve) Vl(X) and energy E1 to a potential V2(x) and 
energy E2, Eq. (32) implies that the main contribution to the FC integral comes from 
x-values which conserve the local kinetic energy, viz. 

V I ( X ) - E 1  = V 2 ( x ) - E 2 .  (33) 

This is the famous FC principle [9], [3]. There are many ways of representing 
condition (33) graphically. Drawing the difference potential V 1 -  I12, [10], is for 
our purpose awkward. We rather plot, as in Fig. 2, each side of Eq. (33) separately 
and look for crossings. Fig. 2 shows for a bound-continuum transition typically 
two (real) crossings xa, Xb, Xa <Xb. Clearly, under special conditions on the 
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-E 1 

-E 2 

E2-E 1 = 

hc ( hl--.- -~ - ) 

~2 

Fig. 2. Turning points xl, x2, x3 and cross- 
ing points xa, xb for a bound-continuum 
transition 

potential  shape and energies, xa and xb may coincide and the two curves touch 
each other at xa--Xb with a common tangent. This situation is exceptional or 
atypical as it separates the large variety of two real crossings xa = Xb from the large 
variety of cases, where the two curves only come close together  but without 
cutting each other over the real axis (complex conjugate crossings). We limit our 
considerations in the following to the typical situation of two separate real crossings 

xa # Xb. Because of this limitation, we call the approach presented here part ial ly  

uniform. A complete,  uniform t rea tment  which allows for passing f rom the two 
separate  real crossings case through the tangency situation which even may occur 
at the turning points 1 to the case of the two complex conjugate crossings is defered 
to a forthcoming publication. 

Assuming henceforth xa and xb well separated enough that in some small 
neighbourhood of x~ and Xb there is a smooth one- to-one  mapping between the 
variables xl, x2, x3 and yl, Y2, y3 which satisfies 

qb(x~, x2, x3) = ~(y~, Y2, Y3), (34) 

where qb is given by Eq. (28) and �9 is 

3 3 
Y l + y 2 +  ~ + 

W = ~ "  "~- y~tay3 b ) + y 2 ( c y 3 + d ) ;  a , b , c , d = c o n s t . .  (35) 

If one chooses [12] 
I 

a = z l (xs), b = - x s z l ( x s ) ,  

c = z ;  (x~), d = -x~z2(xs) ,  x~ = x,, or Xb, (36) 

1 This leads to the unfolding family of the swallowtail [11]. 
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where xs = xa if X 3  tends to xa and x~ = Xb if X 3  tends to Xb, Eq. (34) is satisfied at the 
stationary points, as can easily be verified by use of Eqs. (30)-(32). The poly- 
nomial �9 is a versal unfolding of ~, [11] Chap. 8, locally at x3 = xa or x3 = Xb. We 
do not prove this statement, we simply assume it to be true [13]. As seen from Eq. 
(36) it should be stressed that the one-to-one mapping between x- and y variables 
which acts at x3=xa (subscript a) is different from the mapping at X3=Xb 
(subscript b). The two mappings represent two local coordinate systems or charts 
with domains ~ and @b into which the integral (27) can be decomposed and we 
find with Eq. (34) 

4~2I  = I~ad3yalJalPa e i'I'~ + I~bd3yblJblpt, e iveb, (37) 

where [Ja] or IJbl is the absolute value of the Jacobian for the two mappings 

J = d e t ( d x i ] ,  / ,k  = 1 ,2 ,3 ,  (38) 
kdyk/ 

in either chart a or b. The leading asymptotic term of each of the two integrals in 
(37) can be obtained in a nonrigorous but simple way. One just puts the factors IJI0 
at their stationary values x3 = xa or x3 = xb and replaces the remaining integrals by 
the generic or canonical integral, [7] Chap. 4 and the Appendix of [12], 

i = ( 2 1 r ) - 2 1  d 3 y e ' * = 5 _  dyagi (ay+b)Mi(cy+d)=la3-ca[-1 /3agi (~ l )  
oo 

r /  = ( a  3 - -  c3)(ad - bc)la 3 - c31-4/3. (39) 

We note the manifest symmetry of Eq. (39) upon the interchange a, b <-+ c, d. From 
page 16 in Ref. [14] we infer that the Hessian determinant of xI* evaluated in 
y-variables, H~,, the Hessian determinant of qb evaluated in x-variables, H,~, and 
the Jacobian (38) satisfy 

H,u = J2H~, (40) 

at the stationary points. With Eq. (40), the leading asymptotic approximation to 
Eq. (37) can be written 

x =  T~ x. (41) 
S ~ a ,  b 

where 

L =p(x~)(~-~) ~/2 L, (42) 

and the subscript s indicates that all quantities in Eqs. (39) and (36) are to be 
evaluated at the stationary points with x3 = xs = xa or xs = xb. If only one or even 
more than two real crossings x~ occur, the sum in Eq. (41) will have just as many 
terms as there are real crossings. Calculating the Hessian determinants H,v and H~, 
from Eqs. (35) and (28) and simplifying by making repeated use of Eqs. (30)-(32), 
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I ,  = p (x , )  

where 

one finds for I~ in Eq. (42) after some lengthy but straightforward algebra 

. . . . . .  1 1 / 2 . 1 / 4  z , .  { U l ( X s )  \ 

- -  U t {X ,,11/2 (43) 

= l ( x s ) l z  x ( x , ) l  3/= - = (xs ) [ z  (44) 

and 
z~(x) 

e l (x )  = Iz l  ( x ) r  i = 1, 2 (45)  

ul(x,) = u2(x , ) .  (46) 

Again we note the exchange symmetry of Eqs. (43)-(46), (41) and Eq. (25) in zl 
and z2. For the following it is useful to express the signs of z~ and z~ in Eq. (45) in 
terms of the signs of u~ and u~. To this end we calculate the derivative of u(x) in 
Eq. (4) or Eq. (31) at the turning point x = xl where Z(Xl) = 0 (see Fig. 2). We find 
u'(xl) = [z'(xl)] 3 and hence z'(x) has the same sign as u'(x) at Xl. Since however 
z (x) is a Langer mapping function, z'(x) can not vanish in the interval -oo _< x < x0 
(see Eqs. (4), (5) and Fig. 1) and hence keeps the sign of u'(xl) by continuity. At 
x = x0 however the sign of z'(x) must change and stay constant for Xo < x - + oo as 
a consequence of Eq. (6). The result is simple. The sign of z'(x) agrees with the 
sign of the slope of u(x) or with the sign of the slope of the potential V(x) 
at the corresponding turning point. Thus, the sign of z'(x) coincides with the sign 
of the slope of the two straight lines in Fig. 1 onto which V(x) is mapped in two 
pieces by Langer transforms. 

We close this section by writing down the (partially) uniform approximation which 
we obtain from Eqs. (41) and (43) for the FC integral with the transition moment 
/z (x) (electronic moment, r- centroid etc.) 

/ ,  +oo 

M(E~, V~<-+E2, V2)= [ dx~oE, vl(X)lX(x)r (47) 
oo 

to a transition between the potential V~(x) and energy E~ (bound or continuum) 
and the potential V2(x), energy E1 where the functions 

ui(x) = ~ (V~(x)-Ei), i = 1, 2 (48) 

give rise to two real well separated crossings x,, Xb, X, # Xb, Eqs. (32), (33) 

Ul(Xs) = Uz(X,), S = a, b (49) 

as shown in Fig. 2. From Eqs. (1)-(6) or Ref. [5] Eqs. (23)-(26) and Eqs. (41)-(46) 
we find 

1/4 , 
CE,~dxs)C~2v=(xs)~(x,) & s~, (es~s) (50) 

M(E1, VI<-- ->E2,  g 2 ) ~ - -  Z 2~, s )  
. . . .  b lul(x,)ll/alu~ (xs)- u' Zx , 1/z , 
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where according to Eqs. (3) and (22) 

{ 2mTr .) :/2j" (-1)", 
CEv(xl= \hZO'(E,)} 11, 

for bound states 

2m" ~/2 

for continuum states and 

c, = I<  (x~ )lz , (xs)?/= - e 2(xs)lz 2(x~)]3/2t2/3, 

with 

for -oo  _< x < Xo 
(51) 

for Xo < x --< +c~ 

(52) 

(53) 

ei(x) = sign (zl (x)), i = 1, 2 (54) 

es = sign (ul(xs)) -- sign (u2(xs)). (55) 

It is evident that the mapping functions zl in Eq. (53) can be expressed in terms of 
action integrals. For bound states we find from Eqs. (4)-(6) 

d t [u~( t ) l  ~/2 , for -oO_~x_~xo 
1 

~lZl(x)l 3/2 -- (56) 

Ifx~2dtlul(t)[1/2[, for Xo_<X _< +oo, 

whereas for continuum states from Eqs. (24)-(25) of Ref. [5] with the turning 
point at x = x3 

is obtained. There is a further useful expression, which follows from Eqs. (48) and 
(49) if taking partial derivatives with respect to the energies Ei, 

I dx, 2m , , -a 
dt~i ~-- - ~ l U  l (Xs) - u2 (Xs) ] . (58) 

This formula makes the physical meaning of the denominator of Eq. (50) more 
transparent. 

4. Reflection Approximations and Other Limiting Forms of Eq. (50) 

We first study transitions between a bound state potential Vx(x) and a continuum 
potential V2(x) as shown in Fig. 2. Eqs. (54), (55) yield 

EI(Xa) '~-E2(Xa)=--I ,  

e a = + l  

and 

~l(xb) = +1, e2(Xb) = --1, 

(59) 

(60) 

(61) 
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eb = --1. (62) 

In case of Fig. 2, Eqs. (53)-(60) imply that the argument of the Airy function in 
Eq. (50) is positive and large for s = a, i.e. xa lies far in the classically forbidden 
region, xa < x~ < x3. Since eb = --1, only the s = b term in Eq. (50) can contribute 
significantly. Assuming that in contrast to Fig. 2 the condition 

[Za(Xb)] >> ]Z2(Xb)[ (63) 

holds, one obtains from Eqs. (58), (53), (52), (50) and Eqs. (1)-(4) the bound state 
reflection approximation 

I dxb (E2) 11/2 
M , ( E 2 ) = ~ ( x b ( E 2 ) ) [ ~  I ~,(xb(E2)), (64) 

which exactly satisfies the closure relation, see [15] Eqs. A-13, 14, 
oO -t-oo 

~o dE21M"(E2)[2= f-o~ dxtz(x)~o~(x). (65) 

If instead of Eq. (63) 

[zz(xo )[ >> [Z l (Xb )[ (66) 

holds, we obtain from Eqs. (23)-(24) of Ref. [5] in complete analogy the 
continuum reflection approximation 

( ~ )I/2IdXb(E2)I/2~E2(Xb(E2)). (67) 
M.(E2)=I~(xb(E2)) ~ I dE2 

This expression shares some similarity with the modulated continuum reflection 
approximation of P. M. Hunt and M. S. Child [16]. In fact Eq. (67) should be a 
limiting case of it. 

As a final example to reflection approximations we discuss Eq. (50) for bound- 
bound transitions between a deep excimer potential Vl(X) and a shallow van der 
Waals well Vz(x) as schematically represented in Fig. 3, see also [17]. Again, only 
the term s = b in Eq. (50) contributes since x~ lies far in the classically forbidden 
region of the van der Waals well. We further assume (see Fig. 3) 

Xb ~-Xz (68) 

and 

[zz(xz)[ >> [Z l (Xz)[ ~- O. (69) 

Fi'om Eqs. (58), (48)-(55) and Eqs. (1)-(8) we obtain for the squared FC matrix 
element the  reflection approximation 

2 
[M . . . .  [2 ~- ~q~-2 (xz(n a))/-t (xz(nl)) 

I~(E.1) v~ (x~(n~))[ ' (70) 

where 

V1 (x2(n a)) = E,1, (71) 



Franck-Condon Factors from Vibrational Wave Functions 157 

Fig. 3. B o u n d - b o u n d  transitions 
between a deep excimer potential 
and a shallow van der Waals  well 

and ~P-2 is the wave function of the bound vibrational state in the van der Waals 
well V2(x). With 

dd~ . dE,1 
dE1 dnl = zr, (72) 

and the derivative of Eq. (71) with respect to nl, Eq. (70) can be written 

[M ... .  [2= dx2(nl)]r (73) 
dnl 

alternatively, which shows that the semiclassical closure is satisfied. Detailed 
applications of Eq. (70) are defered to subsequent publications. 

So far, all approximations discussed in this section involved the contribution of 
only one crossing point and additional simplifying assumptions have been made. 
In passing we note, that obviously all the one-crossing-point approximations of 
Refs. [1], [12-13] and [18-19] are contained in Eq. (50). Only the expression 
(A-25) in [15] due to K. Sando and F. H. Mies differs in its structure completely 
from Eq. (50). Whereas Eq. (50) uniformizes the mutual coincidence of a turning 
point with a crossing point and needs well separated real crossings, the Sando- 
Mies approach uniformizes the mutual coincidence of two crossings (real- or 
complex conjugate) but needs, that this occurs well separated from the turning 
points. We could have derived this uniformization from Eq. (27) as well by 
unfolding the coincidence of the two crossings within the fold catastrophe family. 
(The corank of qb, Eq. (28), then is 1, qb is 3-determined and hence its codimension 
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x 3 x 1 x 0 x 2 

x 

H. Kriiger 

Fig. 4. Bound-continuum trans- 
itions where both crossing points x~ 
and xb contribute in Eq. (50) and 
give rise to a highly structured 
continuum 

is 1). As indicated in the discussion below Eq. (33), we rather refer to a 
forthcoming publication in which both of the above extremes are included such 
that even the mutual coincidence of two crossings and a turning point is permitted, 
which may lead to interesting "caustic effects". 

In order to discuss finally at least one case for which both crossing points xa and Xb 
contribute significantly to Eq. (50), we consider bound-continuum transitions 
with curve crossings as in Fig. 4. From Eq. (55) we obtain 

ea = eb = --1 (74) 

and from Eq. (54) 

Ei(Xa) = --1, i = 1, 2, 8 1 ( X b )  = +1, E 2 ( X b )  = -1 .  (75) 

Applying the asymptotic formula 

[Tr+ z~.3/2~ ( ~  + ~  (76) (1/4 sol ( - ( )=~ ' -1 /2  sin k4 3~ ],  

to Eq. (50), we finally arrive at the approximate FC matrix element 

M E , 2 m  xl /2 ,  (-1)" s i n ( 4 + A a  ) 

sin (f+,',b) / 
+ (77) 

1 / 4  t t (Xb) [1 /21 ,  lul(x )l v= 

where, cf. Eqs. (53)-(57), 
__ 2 _ y 3 / 2  As--3~s , s = a , b .  (78) 

Eq. (77) gives rise to interference effects which are observed e.g. in the structured 
E ~ B continuum of the I2-molecule [10]. 
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5. Stiickeiberg's Model  as a Test Example 

E.C.G. Stiickelberg [4] derived a closed form expression for the FC integral for 
transitions between a harmonic ground state and the continuum of a straight line. 
An expression for this FC integral valid for all quantum numbers n is given in 
Appendix 1 of Ref. [5]. Here we discuss the matrix elements 

M,,(o6 3) = d x $ . ( c ~ + 3 x ) M i ( - x ) - - ~  d x $ . ( x ) M i  (79) 
co  oo 

where 0,  is given by Eq. (24). From the momentum representation of Eq. (79), 
obtained by use of Eq. (26), 

t '  
+ c ~  

M~(a, /3) = (27r)-1/2(-i)" J-oo dp t#n(p) e I((~ (80) 

and the Fourier transform 

t "  
+ c o  

(2,n')l/2in~bn(oz) = | dp ~O,,(p) e i'~p (81) 
d ~  oo 

we find the closure relation 
-boo 

I_ da IM.(=,/3)12 1 (82) 
co 

and for/3 = 0 the reflection limit 

M, (a ,  0) = ~b, (a). (83) 

Eqs. (82)-(83) provide useful, but only necessary, criteria for testing approxima- 
tions. The potential curves corresponding to Eq. (79) and 2m/h 2 = 1 are plotted in 
Fig. 5. The exact binding energies are 

E1 --= E .  = 2n + 1, n = 0, ,1, 3 . . . . .  (84) 

the functions u~(x), Eq. (31), are 

Ul(X) = X 2 - E l ,  u2(x) = (ol -x)/3 -3, (85) 

Fig. 5. The potential curves of the 
Stllckelberg model 

I 
v2 (x)=-~-~-, p.o/ 

i I ', , \  
xa' ,  , Xb 

v 1 ( x )  = x 2 
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Table 3. The matrix elements M,, Eq. (80), the approximation Eq. (50), .h~rn, 
and the relative error A = I 1 - ) ~ M n l  in %. The value of/3 is/3 = 0.1. The 
numbers in parentheses denote the power of 10 by which the value in front 
must be multiplied 

H. Kriiger 

n a Mn )~r h(%) 

0.0 0.7511 0.7106 5.4 
0.2 0.7362 0.6984 5.1 
0.4 0.6933 0.6611 4.6 

0 0.8 0.5454 0.5267 3.4 
1.6 0.2088 0.2069 0.9 
3.2 0.4488(-2) 0.4658(-2) 3.8 
5.0 0.4592(-5) 0.3084(-5) 32.8 

0.2 0.2082 0.2060 1.1 
0.4 0.3922 0.3876 1.2 
1.0 0.6442 0.6389 0.8 

1 
2,0 0.2875 0.2879 0.1 
3.0 0.3540(-1) 0.3592(-1) 1.5 
5.0 0.1979(-4) 0.2097(-4) 5.9 

0.0 0.4599 0.4536 1.37 
1.0 -0.4649 -0.4608 0.9 
2.4 0.5731 0.5703 0.5 

4 
3.0 0.3730 0.3725 0.1 
5.0 0.1259(-2) 0.1297 (-2) 3.0 
7.0 0.3166(-7) 0.3504(-7) 10.6 

0.0 -0.3438 -0.3350 2.6 
0.6 0.3436 0.3343 2.7 
1.2 -0.3453 -0.3363 2.6 
1.8 0.3526 0.3451 2.1 

14 
2.4 -0.3621 -0.3577 1.2 
3.1 0.3798 0.3751 1.2 
3.9 -0.4083 -0.4038 1.1 
5.8 0.1398 0.1401 0.2 

0.9 -0.2646 -0.2654 0.3 
3.6 0.2591 0.2688 3.7 
4.5 0.2975 0.2931 1.5 

35 
5.4 0.3041 0.3048 0.2 
6.5 0.3442 0.3396 1.3 

1 0 . 0  0.6591(-3) 0.6950(-3) 5.4 

and  the midphase  point ,  Eq.  (7), is at x0 = 0 by symmetry .  Eqs.  (50) and  (80) have 
been  evalua ted  for/3 = 0.1 and several  values of n and o~. We  note  that /3  = 0.1 as 
in Fig. 5 cor responds  to a qui te  steep straight l ine,  such that  in Eq. (50) only  the 
s --- b te rm cont r ibu tes  significantly. The  results for Mn, Eq. (79) or even Eq. (83) 
and  the results ob ta ined  f rom Eq. (50), M, ,  are listed in Tab le  3. O n e  notes  that  
the error  of )~rn, with the except ion of the g round  state n = 0, is a round  2%.  F r o m  
the exper ience  ga ined  by practical  appl icat ions  of un i fo rm approx imat ions  like 
Eq. (50) such an accuracy is to be  expected.  But  besides saving much  comput ing  
t ime in mak ing  quan t i t a t ive  numer ica l  predict ions,  Eq. (50) provides a qui te  
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t r a n s p a r e n t  i n t e r p r e t a t i o n  of  F C  fac to r s  in t e r m s  of  i n t e r m o l e c u l a r  p o t e n t i a l s ,  a 

poss ib i l i ty  n o t  e v i d e n t  in t h e  n u m e r i c a l  e x a c t  q u a n t u m  m e c h a n i c a l  ca l cu l a t i on .  
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